
λόγος (ver. 3.0.0)
Software Programm for musical
composition

Short Description
The programm is a tool for conversion of a text into tone rows.
It outputs lists of notes and/or Music XML files, which can be
read by a notation software. In this project Finale is used.
Download the programm as a zip by clicking the green button
at the right of the follwing link: https://github.com/17876/logos

Requierments
• Python3 Download the latest stable version at: https://

www.python.org/downloads/
• Libraries with key signatures for Finale (provided with the

script)
• Font "Accidentals.ttf"

Detailed Description
The programm takes a text file and translates it to a tone row.
A rule for the process of tranlsation should be given in a
seprate JSON-File. In the JSON-file the correspondance
between the letters of the text and pitches should be
established.

Note Syntax

https://l.messenger.com/l.php?u=https%3A%2F%2Fgithub.com%2F17876%2Flogos&h=AT2dcefsCNqCXs26jyP7C9ylkkk2_KVVr4BaHaR0_4NevaCHSQzyxPkUGgZibopbr-uA1m57LtCYuFS7Y1thDU-auyGY8exlBkTixadUDVU0TH4VQopOz3q2GkvCPIXzs3fADA8E8YU
https://www.python.org/downloads/
https://www.python.org/downloads/

The programm uses following syntax for notes:
<notename><octave><ct>

<notename>
c cis d dis e f fis g gis a ais h (german system).

<octave>
-great+22vb – sub sub contra octave
-great+15vb – sub contra octave
-great+8vb – contra octave
-great – great octave
-small – small octave
' – 1 Line (middle c) octave
'' – 2 Line octave
''' – 3 Line octave
'''' – 4 Line octave
''''+8va – 5 Line octave
''''+15va – 6 Line octave
''''+22va – 7 Line octave

<ct>
Additional transpositon in cents.

Examples:
ais''''+15va
cis'
d-great+8vb
a-small
dis-great+8vb+25ct

The Note Object (Developer's infomation)
The script works with lists of Note objects. The declaration of
the class you can find in the module note.py. A Note object
can be initialized either with a MIDI-Pitch (also float) or with a
note name, according to the
described syntax for notes. Also a duration, articulation and a

comment can be passed.

For example:

my_note = Note(60.25, 'q', 'a', 'I am a Note')
This line will initialize a Note object with the MIDI-Pitch 60.25,
duration 'q', articulation 'a' and the comment 'I am a Note'.

To initialize a Note object with a note name use:

my_note = Note('c\'+25ct', 'q', 'a', 'I am a Note')
Regardless of the type of initialization (with note name or with
MIDI-Pitch) the object calculates and stores the both
representations of the pitch.

To access the MIDI-Pitch: my_note.midi
>> 60.25

To access the note name: my_note.note
>> c'+25ct

Text Conversion

Main Algorithm

For every single letter, which is to be translated into a pitch a
rule should be given. A letter is not just attached to a fixed
pitch. Every single time the letter appears in the text, the pitch
which is given in the JSON-file with the rule will be transposed
according to a pattern.

A rule for the letter "a" could look as follows:

 "a": {
 "main_note": "cis'",
 "pattern": [1, 1, 1, -3],
 "units": "1/8",
 "alternative": "á",

 "modifier": "a"
 }
This means that every time, when the letter "a" occurs in the
text, the pitch cis' will be generated. Additionally, this
fundamental pitch will be transposed depending on how many
times this letter occured so far. These transpositions happen
according to the pattern-key of the dictionary. The pattern
key sets the relative transposition in units: 1/2 for half tones,
1/4 for quarter tones, 1/8 for eight tones.

In the example above the following pitches will be generated:

1 "a" occurs for the first time Output: cis' (No transposition
fo the very first time the letter occurs in the text.)

2 "a" occurs for the second time Output: cis'+1*(1/8 tone) =
cis' + 25ct (Transposition = +1 Step (1st element in
pattern) = +1/8-tone.)

3 "a" occurs for the third time Output: cis'+25ct (prev pitch)
+ 1*(1/8 tone) = cis' + 50ct (Transposition = +1 Step (2nd
element in pattern) =
+1/8-tone.)

4 "a" occurs for the fourth time Output: cis'+50ct (prev
pitch) + 1*(1/8 tone) = cis' + 75ct (Transposition = +1 Step
(3rd element in pattern) =
+1/8-tone.)

5 "a" occurs for the fifth time Output: cis'+75ct (prev pitch)
- 3*(1/8 tone) = cis' (Transposition = -3 Steps (4th element
in pattern) =
-3/8-tone.)

6 "a" occurs for the 6th time Output: cis' (prev pitch) +
1*(1/8 tone) = cis' + 25ct

So the pattern goes in cycle.

Alternatives / Accents

As in the example above it is possible to work with alternatives
of letters. If an alternative is given and occurs in the text the
note gets a modifier: doubled duration or accent on the note.

For double duration use dd for modifier, for accent over the
note use a. The alternatives are subjected to the same logic of
transposition and from this perspective not considered as
different letters. For the process of the cyclic transposition the
letter and its alternative are indistinguishable.

Example for a JSON-File with translation rules
See rules_example.json:

 {
 "a": {
 "main_note": "cis'",
 "pattern": [1, 1, 1, -3],
 "units": "1/8",
 "alternative": "á",
 "modifier": "a"
 },
 "e": {
 "main_note": "d'",
 "pattern": [1, 1, -2],
 "units": "1/4",
 "alternative": "é",
 "modifier": "dd"
 },
 "ο": {
 "main_note": "h'",
 "pattern": [1, 1, -2],
 "units": "1/4",
 "alternative": "ό",
 "modifier": "dd"
 }
}

Main Menu
To start the script open your terminal and type following line:
python /your_path_to_the_script/logos.py

/your_path_to_the_script is your path to the directory, where
logos.py is located. You can also just type python in terminal
and drag&drop the file logos.py.

Press Enter.

You will see following menu:

1: Text → Notes
2: Convert a list with Note objects into a Music-XML-File
3: Print variables
4: Delete variables
5: Export variables
6: Import variables
q: Quit

For choosing a certain menu option just enter the
corresponding number and press enter.
To quit the programm enter q.

1: Text → Notes

Converts a text into a list of Note objects.
Each list is saved as a variable.

After choosing the menu option 1 you will see following
dialogue.

▶▶▶ Enter the name of the file with the text.
b: Back ║ m: Main Menu ║ q: Quit
>>

Here you can enter the filename with the text you wish to
convert to notes,
go one step back in the menu structure (by entering b), go to
the main menu (by entering m),
or quitting the program (by entering q). The file with the text
should be in the same directory as the logos.py.

Entering the filename with the converting rule

▶▶▶ Enter the name of the JSON-File with the
convertion rule.
b: Back ║ m: Main Menu ║ q: Quit
>> Enter the name of the JSON-file containing the rule for the
conversion.

Entering the variable name for the result

▶▶▶ Enter the variable name for the result.
b: Back ║ m: Main Menu ║ q: Quit
>>
Enter the name of the variable for storing the list with Note
objects.

The programm will generate a list with Note objects stored in
the given variable.
All the Note objects in this list have their MIDI-Pitch as a float
number,
the note name according to the described syntax, articulation
and duration if given
and the letter itself from the text as comment of the Note
object.

2: Convert a list with Note objects into a Music-XML-File

This option creates a Music-XML file from a list of Note objects
stored previously
in a variable.

Entering the variable name

▶▶▶ Enter the variable names for the lists with note
objects separated by spaces.
▶▶▶ The lists will be rendered on separate staves in
a Music-XML-File.

b: Back ║ m: Main Menu ║ q: Quit
>>
Here you can enter multiple variables, and they will be
rendered on separate staves
in the Music XML file. If a modifier was given, the note will be
rendered either with accent or with doubled duration,
depending on the modifier. The corresponding letters will be
rendered as lyrics in Music XML file.

Entering the number of notes per staff, regular duration and pitch
resolution

▶▶▶ Enter the number of notes per a staff, durations
▶▶▶ and the pitch resolution, separated by spaces
b: Back ║ m: Main Menu ║ q: Quit
Additionally syntax information will be also printed out in the
terminal.

Enter the three parameters in one line separated by spaces:
number of notes per staff, regular duration and pitch
resolution. Regular duration is the duration all notes will be
rendered with, if no duration modifier is given in the rule. If the
modifier dd is given (double duration) the note will be rendered
with doubled duration relatively to the regular duration.

Syntax for regular durations:
2: for half notes
p4: for dotted quarter notes
4: for quarter notes
p8: for dotted eigth notes
8: for eigth notes
p16: for dotted 16th
16: for 16th
32: for 32th

The pitch resolution sets the accuracy of roundinng of the
pitches when rendering to Music XML. Keep in mind, that if
working with Finale, you need to have Accidentals.ttf intalled
on your system. You also have to import the corresponding
library with key signatures to your Finale project (the libraries

for 1/4 and 1/8-tones are provided with this distribution).

Syntax for pitch resolution:
1/16: round to 16th tones
1/8: round to 8th tones
1/6: round to 6th tones
1/4: round to quarter tones
1/3: round to third tones
1/2: round to half tones

For example:
10 p4 1/8 means 10 dotted quarters per staff in the Music
XML file. The pitches will be rounded to 1/8th-tones.

Entering the filename for Music XML

▶▶▶ Enter the name for the Music-XML-Files without
filename extension
▶▶▶ The extension will be generated automatically for
two Music-XML-Files:
▶▶▶ for playback and notatioin.
b: Back ║ m: Main Menu ║ q: Quit
Two files will be generated: one for notation only and one for
playback in Finale. In the playback file every note has an
expression attached to it, so it is possible to programm
microtonal transpositions using for example pitch bend in
Finale.

3: Print variables and 4: Delete variables

Using main menu options 3 or 4 you can print out or delete the
variables you created previously.

5: Export variables

Here you can export the variables you created to a JSON-file.
So you can save your project to continue working on it later.

▶▶▶ Enter the name for the JSON-File.
b: Back ║ m: Main Menu ║ q: Quit Here you shoud provide
the name for the JSON-file with the .json extesion, in which all
your variables will be stored. The file will be created in you
working directory.

6: Import variables

By choosing this option of the main menu you can import
previously stored project from a JSON-File.

Importing Music XML to Finale
To import the generated Music XML files to Finale do following
steps:

1 Open Finale
2 Click on "Import Music XML"
3 Import the key signature libraries

i Go to Document Menu
ii Go to Document Options
iii Click "Load library"

4 Choose a rpvided library: key_1_4.lib (for maximal pitch
resolution 1/4 tone) or key_1_8.lib (for maximal pitch
resolution 1/8 tone).

5 Change the key signature on the staves:
i Activate the key signature tool
ii Double click on a staff
iii Choose Non-Standard
iv Click twice on Next till "Linear key format 2"

appears.

